(x-2)(x+5)=2x^2-19

Simple and best practice solution for (x-2)(x+5)=2x^2-19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)(x+5)=2x^2-19 equation:



(x-2)(x+5)=2x^2-19
We move all terms to the left:
(x-2)(x+5)-(2x^2-19)=0
We get rid of parentheses
-2x^2+(x-2)(x+5)+19=0
We multiply parentheses ..
-2x^2+(+x^2+5x-2x-10)+19=0
We get rid of parentheses
-2x^2+x^2+5x-2x-10+19=0
We add all the numbers together, and all the variables
-1x^2+3x+9=0
a = -1; b = 3; c = +9;
Δ = b2-4ac
Δ = 32-4·(-1)·9
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{5}}{2*-1}=\frac{-3-3\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{5}}{2*-1}=\frac{-3+3\sqrt{5}}{-2} $

See similar equations:

| -2=-5a+7+2a | | 21=3/2x+10 | | (4-2i√5)-(3+6i√5)=0 | | 16x^2+16x-36=0 | | 8t2+6t+1=0 | | -4(w+4)+5w=w | | x+8+9x=74-6 | | 8/15=x/21 | | 12=3k+6 | | 1.5-(7÷8)x=2.6x+(1÷5 | | (4x+6)=102+x | | 1.5-(7÷8)x=2.6x+(1÷5) | | y=3+14+24 | | 36-4w=2w | | 2x*2=2x | | X2+4x-2=0 | | (8+5i)-(2+3i)=0 | | 3.x+2x-x+7=4x-x+2 | | 10y=y+70 | | m+11/2=-1 | | .7y+3y+6y=8y+12+12 | | 1.x+3x-x=2x+1 | | 7=-p–6p | | 125=72t+0.5*10t | | 2x^2+x+113=0 | | 3x^2+15=-21 | | 2×+3y+5ž=103×+7y+4ž=-3×+2y+2ž=3 | | F(x)=2^3x-8 | | 16=u6+16 | | 11=12+p2 | | 4x2+8x+3=0 | | 7x+13=-41 |

Equations solver categories